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Abstract

In this paper the method of numerical path integration is applied to investigate the dynamics of a model of a pair of
meshing spur gears. Our approach is based on the observation that the dynamics of a nonlinear mechanical system excited
by a deterministic loading process can, to a large extent, be characterized by the response obtained by adding a small white
noise to the loading. By this, the response can be expressed as a Markov diffusion process, which makes available the
powerful toolbox of stochastic analysis, in particular the path integration method.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Investigating the dynamics of a pair of meshing spur gears presents a challenge inasmuch as a realistic
model of such a system is strongly nonlinear and usually involves a nonsmooth backlash function. The
inadequacy of a linear model for predicting the dynamics of gear pairs has been clearly demonstrated by
experimental studies [1,2]. The reader is referred to Ref. [3] for a literature review of published approaches to
the study of the dynamics of gear pairs, see also Refs. [4,5]. A common feature of all these approaches is to
study the response of the gear system to harmonic forcing or to forcing consisting of a sum of harmonic
components. This leads to a strictly deterministic analysis. An early effort to include uncertain or stochastic
effects is presented in Ref. [6]. A stochastic analysis may be justified on the grounds that there is never a
perfectly harmonic variation of the forcing terms. However, another view on this issue could be that a
complementary stochastic analysis may in fact disclose many of the characteristic features of the deterministic
model, and by that provide further insight into the dynamics of gears. This can be achieved by adding a small
white noise to the harmonic forcing term. In this way the theory of stochastic differential equations (SDE)
and, in particular, the numerical path integration (PI) method becomes applicable [7,8]. As will be
demonstrated in this paper, this kind of stochastic analysis may be very helpful in understanding
the underlying deterministic dynamics. Pioneering work on the application of stochastic methods to the
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study of rattling in meshing gears can be found in Refs. [9,10]. Our work bears significant resemblance
to these early efforts, but differs in some important aspects concerning the adopted dynamic model of the gear
system.

Gear systems have a vast area of application in mechanical installations. The understanding of the dynamics
behind such systems is far from complete and is complicated by the fact that the systems contain a backlash
nonlinearity. Installations containing gears usually have an audible noise which in most cases is undesirable.
Understanding how this noise is generated in order to be able to construct quieter systems is part of the
motivation for studying models for these systems. The dynamic model that will be adopted in this paper is
discussed in Ref. [11].

The scope of the work we present here is mainly of an exploratory nature, where only a very limited number
of problems have been addressed. The main purpose has been to investigate and illustrate the applicability of
the PI method in disclosing the dynamic characteristics of gear systems.

2. A model of meshing spur gears
2.1. A nonsmooth dynamic model

The system considered has two meshing spur gears G| and G, in the same plane where G| is driven by a
motor providing constant torque F and G, is only influenced by the interaction of the gears. The gears and
shafts are, for simplicity, assumed to have the same moment of inertia /, friction coefficient d and radius r.

To prevent the system from jamming, the gaps between the teeth are slightly larger than the width of the
teeth, giving rise to a backlash region. There are now three possibilities for the state of the system. Ideally the
gears are in contact such that G; drives G,. The system may also be operating in free-play when there is no
contact between the teeth. The last possibility is that the gears make contact “on the other side” so that G,
actually drives G;. The difference between the gap size and the width of the teeth is 23, specifying the total gear
backlash. It is believed that the audible noise occurs as the teeth make contact exiting the free-play state.

Due to imperfections in the mounting, the gears are assumed to have a small eccentricity which results in a
time varying vertical displacement as the gears rotate, denoted by e,(¢), « = 1,2. The system is illustrated in
Fig. 1, where the teeth geometry has been simplified for ease of representation.

Denoting the angular displacement of the driving gear by 0; and that of the free gear by 0, and the
interaction between them by b(60, 0,, 7), it is obtained that

10, + d0; + rb(0,,0,,1) = F,
10> + d0, — rb(0,, 0, 1) = 0. (1)
Here b can be expressed in terms of a backlash function B as
b(01,0,,t) = k(t)B(0; — 0, + e(2)), (2)

i
/Td Fooleq € /(\d

G, G,

Fig. 1. Schematic illustration of the meshing gears.
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where B is given as

y==8 y>p,
B(y)=1{0, IyI<B, (3)
y+pB, y<-8

and e(t) = e (?) + ex(t). B(-) can be seen in Fig. 2. k(f) denotes the instantaneous mesh stiffness of the gear pair,
which varies periodically, see Refs. [5,12—14]. The influence of the eccentricity e(¢) on k(¢) is neglected. For the
simplified model we have adopted in this paper the gear mesh stiffness is assumed to be constant, that is,
k(t) = k = constant. Linear damping has been assumed, which is the most commonly adopted model [5], while
in some cases it would have been relevant to also include, e.g. dry friction. Further, it may sometimes lead to a
more realistic model if a certain degree of energy loss is associated with the transition between the free-play
and the contact phase [15]. Since this effect is commonly neglected in the analysis of gear dynamics, we have
chosen to do the same. However, gear models obtained by including such elements can also be studied by the
method presented in this paper.

In the limit when x — oo the case of perfectly elastic impacts is reached. For a review of the literature on
random vibrations with impacts, cf. Ref. [16]. However, for finite k our dynamic model is different from that
of the classical vibro-impact systems. The similarity lies in the strongly nonlinear and nonsmooth backlash
restoring force function B(-). Some authors refer also to such systems as being of (soft) vibro-impact type
[5,16]. For a discussion of the dynamics of vibro-impact and strongly nonlinear dynamic systems, cf. Ref. [17].

By assuming the gears to be running at approximately constant angular speed Q and using that, upon this
assumption, the energy put into the system by the forcing should equal the energy dissipated by the interaction
and friction, it is obtained that

d0, +rb=F,
d0-2 —rb=0, “4)

where the overbar denotes the time average. Assuming an average rotational speed 272, adding the two
equations yields

F = 4ndQ. ()
This system may be transformed into a single degree of freedom system by a change of variable
O(1) — e(1) = 0:1(2) — 0:2(0). (6)
x 1074
3 -
2 L
1 L
=0
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-3
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y x 107

Fig. 2. The backlash function B for f =6 x 107*.
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Now the system Eq. (1) becomes

d. 2k F d. .
It is assumed [11] that the eccentricity is sinusoidal with period corresponding to the rotation of the gears, so
that the right-hand side can be approximated as

F d, . F

7 + 7€ +ée= T + & cos(2mQ1). ®)
The substitution 7= Q¢ makes the time dimensionless, and renaming the coefficients yields the
nondimensionalized single degree of freedom equation of motion

O+

O + 60 + 2kB(O) = 416 + ¢ cos(2ni), )

which will be the main focus of this study. Here the dot denotes differentiation w.r.t. 7. The system equation
may be rewritten as a system of first-order equations

0=09,
@ = 4715 + ¢ cos(2nf) — 0D — 2k B(O). (10)

Appropriate values of the pertinent nondimensionalized parameters are given in Table 1.

2.2. Vibrational aspects

To simplify the analysis, we assumed that the mesh stiffness, which is a periodically time-varying function,
could be approximated by a constant. Retaining the time varying mesh stiffness gives rise to a parametric
vibration problem [18]. And, generally, the variation of meshing stiffness is a major source of vibration in
gears. One of the reasons for this is the observed strong interaction between the time-varying mesh stiffness
and the gear backlash [19]. In principle, the numerical PI method described in the present paper is able to cope
with the case of time-variant meshing stiffness without having to simplify the nonsmooth backlash function
already included in our model. It is therefore desirable to apply the PI method also to this more general and
difficult case. This will be pursued in future work.

3. Deterministic solutions

As a basis for studying the system with random perturbation, it is of interest to get a certain understanding
of the underlying deterministic behaviour. Some research on this topic exists [11,3], but many aspects are not
understood.

The focus of this work is the stochastic gear model, and the objective of this section is to get a basic
understanding of the structures that are believed to influence a noisy gear model. As suggested in Ref. [3], the
deterministic model has harmonic-, subharmonic- and chaotic solutions, but investigations into the existence
and stability of these are outside the scope of this paper.

In order to limit the range of possible solutions, the dimensionless parameters of Table 1 will be thought of
as a “‘realistic” case, and the parameters of interest will be varied around these.

Table 1
Nondimensionalized parameters

Parameter Typical value

B 4-8x107*
0 3x 1074

€ 1x107*

K 110
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The forcing is periodic, hence it is expected that there are initial conditions and parameter values resulting in
periodic @. As in Ref. [11] the notation P(m,n",n™) is introduced. Here m is the periodicity of the solution,
that is ©(r) = O(t + m), n* is the number of times per period the system hits the upper boundary ® = 8 and
n~ the number of times per period the system hits the lower boundary ® = —f. Other types of solutions &
may also exist.

When x — oo explicit solutions may be derived [11]. For the realistic parameter values such solutions are
not available, but stroboscopic plots suggest there are periodic solutions for these parameter values as well.

The bifurcation theory of this system is a topic of ongoing research. It is well beyond the scope of this work
to make a detailed study of these phenomena.

To gain insight into the nature of the deterministic solutions, a range of numerical simulations were
carried out for different initial and parameter values to get an idea of which solutions exist for the parameters
in Table 1.

Phase space plots for m = 1 and 2 are shown in Fig. 3. A P(1, 1, 0)-solution exists, but for m> 1, the orbits
hit the other boundary.

Decreasing the damping parameter from 6 = 3.0 x 107* to 6 = 0.5 x 107*, leads to the phase space plots
shown in Fig. 4.

The study of the deterministic system revealed that the existence of solutions depend on the parameters.
The choice of § and ¢ appears to influence which solutions exist, and there seems to be stable solutions hitting
one boundary for most choices of parameters.

As pointed out above, the deterministic dynamics of this system are complex and not completely
understood. Our approach was to use the methods that are available to obtain some understanding of what is
going on. This is far from the rigorous mathematical descriptions available for simpler systems that have been
studied for a long time. However, for the study of the stochastically forced system, the obtained understanding
was very helpful in interpreting the stochastic results. Also, it was observed that some inferences can be made
from the behaviour of the stochastic system back into that of the deterministic version, which was the main
motivation behind pursuing this study.

4. The stochastic model

The stochastic model obtained by adding white noise to the r.h.s. of Eq. (9), is written in terms of an SDE
for the state space vector process (O(7), d(1))", where the dimensionless time 7 has been replaced by ¢ for ease

x 1073

do/dt
<)

(C) x 107

Fig. 3. Phase plots of deterministic solutions for the values of Table I, m=1(—) m =2 ——).
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x 1073
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o

Fig. 4. Phase plots of deterministic solutions for d = 0.5 x 107™*. m=1(—), m=2 (=), m=3 (=), m=4 (- — ).

of notation. The superscript T denotes transposition. The SDE obtained can be written as follows:

dO = @dt,

dd = [4n5 — 5® — 2kB(O)]dt + & cosnt) dt + AdW (1), (11)

where W (¢) denotes a standard Brownian motion and /4 a parameter for noise strength. The PI algorithm will
be the main tool for solving these equations, supported by Monte Carlo simulations.

The added white noise may be considered to serve two purposes. The first is to represent a simple model for
physical perturbations to the pure harmonic forcing. The second is to transform the response into a Markov
diffusion process, which can be studied by numerical PI.

The previous sections give some information on what qualitative features one may expect. Studying the
deterministic system the periodic solutions were seen to be an important element in the dynamics of meshing
gears. Based on the general considerations above, the addition of noise is expected to give distributions that
show the characteristics of the basins of attraction around these solutions.

As damping is present, it is likely that the effects of the initial condition die out and that a steady state may
very well be observed. Due to the sinusoidal forcing, this is expected to be asymptotically periodic.

The SDE (11) has a unique solution in the strong sense for every choice of parameter values, cf. Ref. [20].

5. Path integration
5.1. The basic method

The PI method is based on the fact that the state space vector, ¥ = (@, ®)', obtained as a solution of the
SDE (11) is a Markov vector process. A global solution for the joint PDF p(y, ¢) of Y(¢) as a function of time ¢
is obtained by exploiting the following basic equation:

PO 1) = /F POty O 1) Y, (12)

where I' = state space, p(y,t)/,t) denotes the conditional PDF of Y(¢) given that Y(¢) =)/, ¢ <t. For
small time increments At =1 —1¢, p(y,ty/,¢) will be referred to as the incremental transition probability
density (TPD) function. For a numerical solution of an SDE, it will be shown that the TPD can always
be given as an analytical, closed form expression if the time increment is sufficiently small. Hence, if an
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initial PDF, py,(y) = p(y, 1) say, is given, then Eq. (12) can be invoked repeatedly to produce the time
evolution after 7y of p(y, ) as follows:

p.0) = /F . /F T1P0. a0, 1) - pg @) dy© ... dy =, (13)
i=1

where y =y, and ¢, = 1.

Eq. (13) expresses the mathematical formulation of the PI principle as adopted here. To arrive at the
numerical implementation for the specific dynamic model considered in this paper, let us rewrite Eq. (11) in the
following way:

dY(t) = g(Y(2), )dt + bdW (), (14)

where g(Y, 1) = g(O, D, 1) = (D, 410 — 6 — 2k B(O) + ¢ cos(2nr))! and b = (0, 1)T.

A numerical solution procedure is based on choosing a time increment At = ¢ — ¢’ such that the PDF of Y (¢)
can be calculated for each given value of Y(¢). The basic version is the Euler—Maruyama approximation of
Eq. (14)

Y(©) = Y()+ g(Y(£), !)At + DAW(Y). (15)

However, as pointed out by Naess and Moe [8], when the deterministic part of the SDE (14) is
considered, Eq. (15) reduces to the Euler approximation y(f) = y(¢') + g((¢'),)At. As is well known,
this approximation is only accurate to order O(Af#?). To improve the accuracy, a fourth-order
Runge-Kutta (RK) approximation was implemented, which replaced the function g(y,7)At by the
corresponding RK approximation, /;(y, t, At) say, which is written symbolically as A(y, f)At. Naess and Moe
[8] then suggested to replace Eq. (15) by what was referred to as the Runge—Kutta—Maruyama (RKM)
approximation

Y(t) = Y(£) + h(Y(£), {)At + BAW(Z). (16)

It is realized that in the RKM approximation, the simplest approximation to the integral ftf bdW(s) is still
retained, viz. PAW (¢'). Improved approximations to this integral are of course also possible and will lead to yet
other approximations beyond Eq. (16) [20]. However, experience indicates that such improved approximations
do not substantially improve numerical efficiency for the kind of dynamic systems considered here. In that
respect, the most important modification seems to be the implementation of the RK approximation A(y, t)At.
This aspect is discusses in more detail in Ref. [8].

Since the Brownian motion process has independent increments, it follows from Eq. (16) that
the sequence {Y,a);c, is a Markov chain. For sufficiently small Az, it can be shown that this
Markov chain will approximate the continuous time Markov process solution of the SDE (5). It is
also observed from Eq. (16) that the TPD p(y, t[y/, ¢) is a Gaussian PDF since AW(¢) is a Gaussian variable
for every 7.

From the assumptions above we may now write the TPD corresponding to Eq. (16)

PQ’a t|y/a Z‘/) = 5()}1 - y/l - hl()/, Z/)At) . ﬁ(y2|y/s Z/)a (17)
where y = (y;,,)", (-) denotes the Dirac delta function and
N o 1 — = (Y, 1)A1)?
Pty 1) = _exp{_O’z 22 22()} A1) },
V2onitAt 247 At
where h = (h1, h»)". Hence, the TPD p(y, 1|y, ) is a degenerate multidimensional Gaussian PDF.

(18)

5.2. Accurate Runge— Kutta time stepping

An important aspect of the implementation of our PI procedure is a backward RK step, which is done for
the deterministic part of the model. By this, all points y’ that contribute to the PDF p(y,7) in Eq. (12) are
identified, cf. Ref. [8]. For problems of the kind considered in this paper, where the nonlinear restoring force
function changes abruptly from the free-play condition to the contact condition with a very stiff restoring
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Fig. 5. For the specified time increment A¢ a point o is mapped by backward time stepping to a point ¢ using a procedure for identifying
and separating the contact part of the trajectory (- - -) from the free-play part (—).

force, it becomes important to be able to identify the transition point between the two regimes within a time
step At. In principle, this can be avoided by using a very small time step, but this is not a practical option.
The identification is done by first using an RK-step for the system in the appropriate region combined with a
Newton iteration method to locate the transition point on the trajectory. This leads to a time step Ay, say.
Then a second RK-step over At, = At — Aty is used in the other region to locate the correct position of the
final point. The requirement to be satisfied is that the time step chosen must allow a sufficiently accurate
prediction of all the likely paths in phase space that the system will follow. Fig. 5 shows a schematic of the
mapping process. Note that the proper scaling of the discretized noise process is automatically taken care of by
the fact that the variance Var[AW ()] = Atz. Hence, changing the time increment automatically changes the
variance of the noise variable accordingly.

6. Gear dynamics by path integration

The understanding of the deterministic dynamics provides an idea of the dynamical “landscape’ and will be
compared to the stochastic behaviour.

First, some initial observations on the behaviour of the PDF are made. In Section 7 the solutions are studied
for some interesting choices of parameters. The scope has been limited to parameters in a neighbourhood of
the realistic ones.

The PI method provides us with numerical approximations to the probability density function. Drawing
conclusions from these can be done only on a qualitative level, still it will be seen that interesting features of
the stochastic gear model are observed by studying the PDF.

6.1. Supporting the findings using Monte Carlo simulations

There is, of course, the question of whether the solutions obtained using the PI method really converge
towards the correct solution. In order to support the results, they should be compared to the results from
Monte Carlo simulations.

It turns out that with the low levels of noise used for studying this system, the strategy of simulating from
one initial value and obtaining an average over a long time, did not provide good results. Instead, simulations
were run from several initial values and the position at several instants registered.

The results that have been obtained in this manner are neither “dense” nor smooth, but show that the
system is indeed attracted towards the same types of solutions found using PI. A couple of examples are shown
below.

A RKM-scheme has been used for this. The coefficients are those of the fourth-order explicit RK—scheme
with fifth-order time step correction found in Ref. [21, p. 169]. When crossing the boundary, interpolation is
performed and integration continued from the boundary into the next domain.
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6.2. Initial observations

Before studying the effects of varying parameters in the next sections, a few observations on the overall
behaviour of the PDF are made.

A realistic choice of initial values would be inside the free-play region and with reasonable velocities.
Choosing an initial distribution centred at the origin with variance so that the mass is mainly inside the free-
play region and with the parameters of Table 1, a first observation is made.

The noise strength is chosen small, 2 = 1 x 107>, as the scale of the problem is small. The value chosen for
this parameter is to some extent arbitrary. However, an investigation into the effect of the noise strength by
also using ZS =1x107* and 1 x 107°, revealed only a marginal effect. Hence, in this study, we have used
A=1x107".

It can be seen in Fig. 6 that the solution is drawn towards a PDF that is mainly inside the free-play region
and has close resemblance to the P(m, 1,0)-solutions. As the plots are of a qualitative nature the exact values
have been omitted, but the blue colour corresponds to low probability density and red to high probability
density.

Marginal distributions of position and velocity at two time instants are shown in Fig. 7. The PDF of the
position has two peaks, one in the free-play region and one in the impact region. These correspond to low
velocities which explains why the system is likely to spend more time there.

Comparing the asymptotic structure to the deterministic trajectories seen in Fig. 4, the similarity to the
P(m, 1,0)-solutions seems obvious.

It should be pointed out that the asymptotic distribution is still subject to the periodic forcing and is not a
fixed point of the PI operator. This is observed by the peaks of the marginal distributions moving periodically
as is illustrated in the velocity plot of Fig. 7. In the following section the average PDF over a period will be
used for comparing different solutions.

A Monte Carlo simulation supports the findings from the PI method, but is nowhere near the short run time
or the smooth distribution obtained using PI. A plot of the PDF is given in Fig. 8. As can be seen, even for a
large number of initial values, the distribution is far from smooth. It does however support the findings in
Section 7.

The initial probability density function does obviously influence the time dependent evolution of the PDF,
but ideally it should be verified that different choices of PDFs do lead to the same stationary average
distribution.

In Fig. 9 an initial PDF with small variance centred well outside the basin of attraction of the P(m, 1,0)
periodic solutions of the deterministic system. The offset PDF of Fig. 9 does spend some time around a
P(m, 1, 1)-periodic orbit. After ten periods, the snapshot PDF still indicates a P(m, 1, 1)-type of solution. To
get an impression of the tendency towards a P(m, 1,0)-type solution, which seems to be representative for the
long-term picture, 3000 periods were calculated for the initial distributions of Figs. 6 and 9. In Fig. 10 are
shown three snapshots of each case: After 1000, 2000 and 3000 periods. This figure reveals two things. Firstly,
it appears that for both cases the (instantaneous) PDF will approach the same final PDF. Secondly, even after
3000 periods, the system has not reached its final state.

7. Results

Using the parameters of Table 1 as a point of departure, runs are made to see how the parameters 6 and ¢
affect the average PDF.

The result of varying ¢ is seen in Fig. 11. For small values, the solutions are not very different. It is only
when drastically increasing the eccentricity that a qualitatively different solution is observed.

For ¢ = 0.001, the bimodal structure of the solution has almost disappeared, suggesting that for large ¢
stable solutions hitting one side cease to exist. The solution does not, however, have the symmetry in @ that
should be expected from a P(m, 1, 1)-structure, suggesting that the underlying deterministic feature is a
P(m,1,0)-orbit that has a minimum close to the lower boundary. This suggests that the familiar P(m, 1, 0)-
structure of the stationary PDF breaks down for large e.
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do/dt

do/dt

do/dt

do/dt

do/dt

Fig. 6. A path integration result for the stochastic gear model. The time between each snapshot is half a period. Time starts at the upper
left hand figure and runs to the right.

Returning to the realistic value of the eccentricity, the damping is varied. From Fig. 12, the value of
appears to have two functions. As seen when studying the deterministic solutions, the location and existence of
solutions seems to depend on the relation between J and ¢. It also appears that J affects how effectively the
probability density is drawn into the potential well. Small ¢ result in distributions with large tails, large J give
more distinct peaks.

For the largest value of 6 used here, the solution has moved across the boundary and it will be seen in the
next section that for even larger 0, nearly all the probability mass is found in the upper contact region. When
the damping is very low, the resulting distribution is close to a P(m, 1, 1)-solution, although there is still a slight
asymmetry in favour of the upper contact region.
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Fig. 7. The marginal distributions of ® and d®/dr at two time instants.

x 10°

-1 -08-06-04-02 0 0.2 04 06 0.8 1
x 1073

Fig. 8. A Monte Carlo simulation shows a similar structure to that obtained by path integration.

Large eccentricities or small damping increase the time required to reach the stationary state. Such
parameter values also give stationary states with very lively periodic behaviour.

It should be emphasized that it appears to be the relation between ¢ and ¢ that determines the behaviour, as
the PDFs corresponding to realistic ¢ and low § show similarities to those for large ¢ and realistic 9.

8. Summary of observations

The focus here has been on the behaviour of the probability density function for different parameter values
and the ability of the PI method to obtain such results.

Choosing different parameters, three classes of solutions have been investigated. The influence of the
underlying dynamics is clear, and the stochastic forcing seems to make the system asymptotically stable
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do/dt

do/dt

do/dt

do/dt

do/dt

Fig. 9. A narrow initial distribution located close to a P(m, 1, 1)-orbit spreads out, but reflects this kind of solution for some time.
However, the solution converges eventually towards a PDF that reflects a P(m, 1,0)-solution. The time between snapshots is still half a
period.

revealing important aspects of the dynamics, especially concerning the stability of periodic solutions.
Compared to classifying solutions for the deterministic case which is a hard problem to solve, adding noise
and observing the PDF provides a “map over the deterministic landscape™ in an elegant manner.

If the situation where the system is in permanent contact is considered optimal and a state hitting one side is
considered to be behaving nicely, the overall impression is that high values of the relation /¢ result in well
behaving systems.

The suggestion to minimize the eccentricity is, perhaps, not as surprising as the idea of increasing the
damping. While the first requires an increased accuracy in the manufacturing that may be hard to obtain, the
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x 1073

do/dt

do/dt

0.6

o e) x 1073

Fig. 10. Snapshots of the PDF at 1000, 2000 and 3000 periods. The upper row corresponds to the initial PDF of Fig. 6, while the bottom
row corresponds to the initial PDF of Fig. 9. The number of periods is increasing from left to right.

900 r
800 r
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600
500 r
400 |
300

f(®)

200 r
100

-08-06-04-02 0 02 04 06 08 1
(S} x 1073

f(dor/dt)

180 ¢
160
140 |
120 |
100 t
80 |
60 |
40 |
20 |

-0.015 -0.01 -0.005 0 0.005 0.01 0.015

do/dt

Fig. 11. Marginal distributions of © and d@/dt for different values of &&= 1.0 x 107> (= - ), e =5.0- 107> (==), e = 1.0 x 107* (=),
e=50x10"% (== and e =1.0 x 1073(—).

second is easily obtained by increasing the friction. The system will, of course, be less efficient, but this might
not be a significant loss. As the real-life geared system is subjected to random perturbations, these
observations are believed to be of interest when designing such systems.

PI seems to deal with piecewise linear systems in an excellent manner. Applied in its original form, the
solutions are convincing, but an adaptation of the method to improve the accuracy for piecewise linear
problems has been suggested and used to obtain the results above.
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Fig. 12. Marginal distributions of ® and d® /dr for different values of . = 3.0 x 1073 (—-),0=15x 1073 (—=),0=3.0x 1074 (=),
6=15x10"* (= —-)and 6 = 3.0 x 1073(—).

9. Concluding remarks

The main purpose of this work has been to investigate the potential applicability of numerical path
integration to the study of the dynamics of meshing gears. Even though the nonlinearity of the dynamic model
poses a challenge in the implementation of numerical path integration, it appears that the method can indeed
serve as a very useful additional tool for the study of such systems. Applying the method to the specific model
at hand has revealed several interesting features and lead to a deeper understanding of the dynamics of the
system.

In this paper we have wanted to study the deterministic dynamics of a pair of meshing gears. To make
available the path integration technique, a small amount of white noise was added. The intensity of the white
noise is largely arbitrary as long as it is small enough to avoid noticeable effects on the dynamics of the system.
This is simply checked by varying the intensity over a range of, say, two orders of magnitude, which was done
for the model used in this paper.

A final comment may be appropriate. It is often poorly understood, or not fully appreciated, that the
numerical path integration method in fact provides the complete solution to the dynamics of the approximate
model under study. Approximate in the sense of a numerical solution of Eq. (16) with specified initial
conditions. Within this framework of discretization and smoothing by interpolation, the whole dynamic

picture is present. If one knows how to interpret the joint probability density function of the state space
process, a unique insight into the dynamics of the system is at hand.
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